Medizin & ForschungNatürliche Medizin

Studie: Eine Untersuchung des naturheilkundlichen, klinischen Fallmanagements unter Verwendung komplexitätswissenschaftlicher Prinzipien

Begründung

Traditionelle Medizinsysteme, wie die Naturheilkunde, basieren auf Ganzheitlichkeit; ein philosophisches Paradigma, das mit der zeitgenössischen Komplexitätswissenschaft übereinstimmt. Das naturheilkundliche Fallmanagement basiert auf dem Verständnis eines eng miteinander verbundenen inneren physiologischen und äußeren Kontextes des menschlichen Organismus – was möglicherweise auf eine Weltsicht hinweist, die auf eine Komplexitätsperspektive ausgerichtet ist. In dieser Studie untersuchen wir das naturheilkundliche Clinical Reasoning unter Verwendung einer Komplexitätslinse mit dem Ziel, das Ausmaß der Übereinstimmung zwischen den beiden festzustellen.

Methode

Mind Maps, die Falldarstellungen darstellen, wurden von Naturheilkundlern mit australischem Abschluss gesucht. Es wurde eine Netzwerkkartierung durchgeführt, die dann in Übereinstimmung mit einem komplexitätswissenschaftlichen Framework unter Verwendung von explorativen Datenanalyse- und Netzwerkanalyseprozessen und -werkzeugen analysiert wurde.

Ergebnisse

Naturheilkundliche Fallschemata in Form von Mindmaps ( n  = 70) wurden gesammelt, vernetzt und analysiert. Insgesamt wurden 739 eindeutige Elemente und 2724 Links im gesamten Netzwerk identifiziert. Integrale Elemente im gesamten Netzwerk waren: Stress, Müdigkeit, allgemeine Angstzustände, systemische Entzündungen, Darmdysbiose und Ernährung. Ein Modularitätsalgorithmus erkannte 11 Gemeinschaften, von denen die primären das Nervensystem und die Stimmung repräsentieren; Magen-Darm-Trakt, Leber und Ernährung; Immunfunktion und Immunsystem; und Ernährung und Nährstoffe.

Schlussfolgerungen

Naturheilkundliches Case Management ist ganzheitlich und basiert auf der Perspektive einer integrierten Physiologie und äußeren Zusammenhänge des menschlichen Organismus. Das traditionelle Konzept des Holismus führt, wenn es einer Komplexitätslinse unterzogen wird, zur Entstehung eines zeitgenössischen ganzheitlichen Paradigmas, das sich bewusst ist, dass der menschliche Organismus ein komplexes System ist. Die Anwendung der Komplexitätswissenschaft zur Untersuchung des naturheilkundlichen Fallmanagements, wie sie in dieser Studie verwendet wird, zeigt, dass es möglich ist, traditionelle Philosophien und Prinzipien auf wissenschaftliche und kritische Weise zu untersuchen. Ein komplexitätswissenschaftlicher Forschungsansatz kann ein geeignetes wissenschaftliches Paradigma bieten, um unser Verständnis traditioneller Gesamtsysteme der Medizin zu entwickeln.

1. EINLEITUNG

Der menschliche Organismus ist ein Beispiel für ein komplexes System, und dennoch werden Forschung und Praxis im Gesundheitswesen weiterhin weitgehend von einem reduktionistischen und mechanistischen Paradigma 1 , 2 beeinflusst, das in seinem Umfang nicht ausreicht, um diese Komplexität vollständig zu erfassen. 3 , 4 Allerdings identifizieren sich einige Berufsgruppen, die primäre Gesundheitsdienste erbringen, aktiv mit Paradigmen, die nicht reduktionistisch sind. 5 – 7 Die Clinical-Reasoning-Prozesse traditioneller Gesamtsysteme der Medizin sollen angeblich durch Holismus untermauert werden 8 , 9; ein philosophischer Begriff, der auf die gleiche Weise wie Komplexität definiert wird, wo „Teile eines Ganzen in enger Verbindung stehen, so dass sie nicht unabhängig vom Ganzen existieren oder nicht ohne Bezugnahme auf das Ganze verstanden werden können, das somit als größer angesehen wird als das Ganze Summe seiner Teile“. 10 Clinical Reasoning ist eine Kernkomponente aller Disziplinen im Gesundheitswesen 11 und ein Schlüsselelement bei der Beurteilung und Entscheidungsfindung bei der Behandlung. 12 Clinical Reasoning sind die kognitiven und metakognitiven Prozesse 13 , die verwendet werden, um Informationen aufzunehmen, abzurufen, zu bewerten und zu verwerfen, die während der klinischen Begegnung entstehen 14 und von der Philosophie des Praktikers geprägt sind.

Die Naturheilkunde ist ein traditionelles Gesamtsystem der Medizin und wird von der Weltgesundheitsorganisation 15 aufgrund ihrer Integration von traditionellem und zeitgenössischem Gesundheits- und Humansystemwissen anerkannt. Die Naturheilkunde wird gemäß einer Reihe global einheitlicher Grundphilosophien und -prinzipien gelehrt und praktiziert. 16 Holismus und Vitalismus sind die grundlegenden naturheilkundlichen Philosophien; Holismus basiert auf der Erkenntnis, dass „die spirituellen, psychologischen, funktionalen und strukturellen Aspekte eines Individuums voneinander abhängig sind und von externen, umweltbedingten, sozialen und anderen Faktoren beeinflusst werden“. 17 (p7)Menschliche Gesundheit und Manifestationen von Krankheiten werden von Naturheilpraktikern als Ausdruck der engen und komplexen Wechselwirkungen zwischen einer Reihe interner Systeme und externer Faktoren 18 verstanden , die durch den naturheilkundlichen Multisystemansatz aufgezeigt werden. 19 Naturheilkundliche klinische Prozesse beruhen auf der Beurteilung des gesamten menschlichen Organismus, der aus voneinander abhängigen und miteinander in Beziehung stehenden Subsystemen besteht, die die externen Systeme, in denen er sich befindet, bidirektional beeinflussen. 8Als Teil des naturheilkundlichen ganzheitlichen klinischen Managementprozesses wird ein ganzheitlicher Behandlungsprozess initiiert, der darauf abzielt, globale Verschiebungen über alle Subsysteme des miteinander verbundenen Organismus hinweg zu bewirken, anstatt sich auf ein System der Krankheitsklassifikation basierend auf syndromalen Mustern und entsprechender spezifischer Behandlung zu konzentrieren. 6 Während Holismus ein traditionelles Konzept mit historischen Wurzeln ist, kann eine Komplexitätsperspektive die Entwicklung des traditionellen Holismus zu einem zeitgenössischen wissenschaftlichen Paradigma unterstützen.

Naturheilkundliche Eingriffe werden in der Regel auf Basis von Individualisierung, 20 Mustererkennung und Systemdenken aus einer Reihe möglicher Optionen ausgewählt. 6 , 8 , 21 Es ist die vollständige naturheilkundliche Behandlung, die spezifische und unspezifische Elemente umfasst, die für Naturheilpraktiker einen Wert hat, der über den eines einzelnen spezifischen linearen Eingriffs hinausgeht. 8 Die Verwendung einer komplexitätswissenschaftlichen Perspektive zur Untersuchung und zum Verständnis des naturheilkundlichen Fallmanagements bietet einen Ansatz, der auf die ganzheitliche Natur der Naturheilkunde ausgerichtet ist, und bietet möglicherweise größere Einblicke als Forschung, die sich ausschließlich auf lineare und spezifische Interventionen konzentriert. 22Die grundlegenden Philosophien und Leitprinzipien der Naturheilkunde orientieren Praktiker daran, auf eine Weise zu arbeiten, die komplex, vernetzt, nichtlinear, minimal-invasiv und bewusst ist und adaptive und emergente Prozesse zulässt; Eine Komplexitätsperspektive ist ideal, um dies zu erfassen. In diesem Papier schlagen wir eine komplexitätswissenschaftlich fundierte Erforschung und Analyse des naturheilkundlichen klinischen Prozesses vor, um das Ausmaß der möglichen Überschneidung zwischen der Systemperspektive der Komplexitätswissenschaft und dem ganzheitlichen Paradigma der Naturheilkunde zu untersuchen.

Komplexitätswissenschaft ist das Studium komplexer Systeme, einschließlich komplexer adaptiver Systeme 23 wie des menschlichen Organismus. Die Komplexitätswissenschaft versucht, die Organisationsprozesse zu verstehen, die Kollektive von Elementen ohne Anleitung durch einen zentralen Controller formen, um ein zusammenhängendes Ganzes zu bilden, das funktionale Muster des adaptiven und sich entwickelnden Seins webt. 24 Die Komplexitätswissenschaft untergräbt die Newtonsche Ideologie, die das wissenschaftliche Denken in den letzten 300 Jahren dominiert hat. 23 Newtonsche Prinzipien kategorisieren Systeme als Maschinen, die aus Elementen und Komponenten bestehen, die unabhängig voneinander 25 und nach einem auf kausalen Beziehungen basierenden Gesetz von Ursache und Wirkung agieren. 23Die Komplexitätswissenschaft ersetzt diese Ansicht durch eine Ansicht, bei der Elemente in mehreren Systemen koexistieren, die sich überlappen und verschachteln – an jedem Skalenpunkt bilden diese Elemente gemeinsam das komplexe System, das sie beherbergt – aus den geschichteten Wechselwirkungen der Elemente entstehen globale Muster. 25 Ein solches emergentes Verhalten des menschlichen komplexen adaptiven Systems ist die individuelle Erfahrung und der Ausdruck von Gesundheit und Krankheit. Die Komplexitätswissenschaft ermutigt uns, Krankheit als Störung im Lebensprozess und nicht als mechanischen Fehler in der Maschine zu betrachten. 26 Während das orthodoxe wissenschaftliche Denken ein Modell der Kausalität angenommen hat, das linear ist und auf Ursache und Wirkung basiert, 27 nimmt die Komplexitätswissenschaft eine entstehende Kausalität an, bei der sich mehrere Einflüsse vermischen, um zu entstehenden Wirkungen zu führen28 , die vielfältig sind und deren Größe oder Ergebnis auf der Grundlage der Kenntnis der einzelnen Eingaben nicht vorhersehbar sind.

Ein komplexes System ist eines, in dem interagierende Komponenten unterschiedliche Eigenschaften erzeugen, wodurch die Verkörperung des Ganzen entsteht, das größer ist als die Summe seiner Teile. 6 , 29 Der biomedizinische Ansatz zur Bewältigung der Komplexität menschlicher Organismen und ihrer Umgebung bestand darin, die oft komplexe Aufgabe des Gesundheitsmanagements durch Reduktionismus 2 zu vereinfachen – einen Prozess des Teilens und Herrschens. 30 Die Forschung zeigt zunehmend, dass der menschliche Organismus als komplexes System funktioniert, wobei die menschliche Gesundheit eine emergente Eigenschaft davon ist, wie zum Beispiel die Erkenntnis einer Geist-Körper-Verbindung, wie die Psychoneuroimmunologie-Forschung zeigt. 31 – 33Der ausschließliche Einsatz reduktionistischer Forschungsmethoden reicht nicht aus, um diese Komplexität vollständig zu erforschen. 21 , 25 Ein Forschungsrahmen, der in der Lage ist, die klinische Argumentation zu untersuchen, die das Fallmanagement informiert und Behandlungsinterventionen bewertet, und gleichzeitig die Komplexität des menschlichen Organismus berücksichtigt, ist notwendig, um die Gesundheitsversorgungspraktiken umfassend zu verstehen und weiterzuentwickeln.

Die Komplexitätswissenschaft ist in den letzten 100 Jahren in der akademischen Literatur aufgetaucht 34 , 35 und wurde in eine Reihe von akademischen Disziplinen integriert, darunter künstliche Intelligenz, Biologie, Wirtschaft, Ökologie, Informationstechnologie 29 und die Sozialwissenschaften. 36 Eine komplexitätswissenschaftliche Perspektive wurde jedoch nur minimal auf die Gesundheitsversorgung und den Fallmanagementprozess angewendet, 35 , 37 , 38einschließlich Naturheilkunde und anderer traditioneller Gesamtsysteme der Medizin. Komplexitätswissenschaftliche Perspektiven wurden in anderen Bereichen erfolgreich eingesetzt, um die methodischen Mängel reduktionistischer Ansätze anzugehen, und obwohl diese auch in traditionellen Gesamtsystemen der Medizin als besonders problematisch identifiziert wurden, 39 wurden bisher keine Untersuchungen zu diesem Thema durchgeführt. Dieses Papier versucht, diese Lücke zu schließen, indem es untersucht, wie die Komplexitätswissenschaft die Forschung zu naturheilkundlichen klinischen Praktiken beeinflussen kann.

2 METHODEN

2.1 Studiendesign

Diese explorative Beobachtungsstudie wurde unter Verwendung eines Netzwerkkartierungs- und Analyseprozesses durchgeführt.

2.2 Ethik-Zulassung

Die ethische Genehmigung wurde von der University of Technology, Sydney Human Research Ethics Review Committee eingeholt (Genehmigungsnummer: ETH20-4864).

2.3 Teilnehmerwerbung

Naturheilpraktiker wurden über eine Social-Media-Kampagne angeworben, hauptsächlich über Facebook-Gruppen, die sich auf den Beruf des Naturheilpraktikers bezogen, und die Facebook-Konten australischer Berufsverbände, die Naturheilkundler vertreten. Die Teilnehmer mussten mindestens über einen naturheilkundlichen Bachelor-Abschluss verfügen, derzeit in einer naturheilkundlichen Praxis tätig sein und ein vollwertiges praktizierendes Mitglied einer australischen naturheilkundlichen oder naturheilkundlichen Vereinigung sein. Die Teilnehmer mussten routinemäßig Mindmaps als Teil ihres Fallmanagementprozesses verwenden. Die Teilnahme war freiwillig und jeder Teilnehmer erhielt eine nominelle Aufwandsentschädigung. Personen, die auf die Social-Media-Kampagne reagierten, wurden mit Informationen versorgt und mussten eine Einwilligungserklärung unterschreiben, bevor sie in die Studie aufgenommen wurden.

2.4 Datenerhebung

Jeder der Teilnehmer, der die Kriterien erfüllte, wurde gebeten, zufällig 10 Mind Maps, jede eines anderen Patienten, aus seinen Fallakten auszuwählen. Diese wurden zusammen mit einer Biographie jedes Patienten per E-Mail an das Forschungsteam geschickt, die einen kurzen (zwei bis drei Sätze) Überblick über den Zustand, das Alter und das Geschlecht jedes Patienten enthielt. Alle Informationen zur Patientenidentifikation sollten aus den Mindmaps entfernt und nicht in die biografischen Details aufgenommen werden, bevor sie an das Forschungsteam gesendet wurden. Die Mindmaps sollten je nach Präferenz und Standardprozess des Praktikers per Hand oder per Software generiert werden. Ein Mitglied des Forschungssemesters gab die in den Mindmaps enthaltenen Daten in Gephi ein – eine Open-Source-Software zur Netzwerkkartierung, Erkundung und Analyse. 40

2.5 Datenvisualisierung

Unter Verwendung von Gephi wurden vier Netzwerkabbildungen erstellt: (i) ein kraftbasiertes Attributlayout , (ii) ein kraftbasiertes physiologisches und externes Systemlayout und (iii) ein kreisförmiges Systemlayout und (iv) ein Modularitätslayout . 41 In jedem Layout wurden die gleichen Daten verwendet; Die Elemente wurden in den Layouts jedoch unterschiedlich Attributen ( kraftbasiertes Attribut-Layout ), physiologischen Systemen und Umgebung ( physiologisches und externes System-Layout und kreisförmiges Layout ) oder Gemeinschaften ( Modularitäts-Layout ) zugeordnet). Jedes Layout bestand aus Knoten (Elemente oder Aspekte des Gehäuses) und Kanten (Verbindungen zwischen den Elementen). Die Verbindungen waren gerichtet und stellten eine Beziehung oder Form des Einflusses zwischen den Elementen dar. Die Elemente und Verknüpfungen wurden von einem oder mehreren Teilnehmern als relevant für eine oder mehrere der in ihren Mindmaps dargestellten Fallkonzeptionen identifiziert. Innerhalb der Netzwerkabbildungen wurden die Elemente durch Kreise und die Verbindungen durch Linien dargestellt. Die Richtung der Glieder wurde durch Krümmung im Uhrzeigersinn demonstriert. Die Größe jedes Elements wurde durch die kombinierte Anzahl eingehender und ausgehender Links bestimmt (auch Grad genannt) – je größer das Element, desto höher seine Anzahl an Links.

2.5.1 Kraftbasiertes Attributlayout

Das kraftbasierte Attributlayout wurde mit einem Gephi – Algorithmus erstellt, der dazu führte, dass verbundene Knoten angezogen und nicht verbundene Knoten abgestoßen wurden. Dies führte dazu, dass die am stärksten verbundenen Elemente zentral gruppiert und die am wenigsten verbundenen Elemente an die Peripherie gedrängt wurden. Jedes Element wurde nach sechs verschiedenen Attributen eingefärbt, die vom Forschungsteam zugewiesen wurden. Die Attributtypen waren: (i) Zeichen, Symptom, innerer Zustand , (ii) hypothetisches Risiko , (iii) genetische, konstitutionelle, familiäre Veranlagung , (iv) Organ, funktionelles Subsystem , (v) äußerlich, Umwelteinfluss und (vi ) biomedizinische Diagnose/pathologisches Ergebnis(Tabelle  1 ).

Tabelle 1. Attributschlüssel und Beispiele
AttributFarbeBeispiele
Zeichen, Symptom oder innerer ZustandViolettAppetitlosigkeit, Dermatitis
Äußerer oder UmwelteinflussGrünNiedrige essentielle Fettsäuren in der Nahrung, übermäßiger Gebrauch von Abführmitteln
Organ oder internes funktionelles SubsystemOrangeImmunsystem, Schilddrüse
Hypothetisches RisikoBlauOsteoporoserisiko, hepatozelluläre Schädigung
Genetische/konstitutionelle/familiäre VeranlagungGelbFamiliengeschichte von Herz-Kreislauf-Erkrankungen, Familiengeschichte von hohem Cholesterinspiegel
Biomedizinische Diagnose, Labor- oder PathologieergebnisRotPerniziöse Anämie, gutartige zervikale Läsion, Zöliakie

2.5.2 Kraftbasiertes und kreisförmiges physiologisches und externes Systemlayout

Für das physiologische und externe Systemlayout wurden 15 Subsysteme identifiziert, die den menschlichen Organismus betreffen (Tabelle  2 ). Diese Systeme waren nicht kategorisch verschieden (z. B. hätte ein niedriger Testosteronspiegel dem endokrinen System oder dem Fortpflanzungssystem zugeordnet werden können, und dem lymphatischen System wurde eher der Status einer einzigartigen Kategorie als einem Subsystem des Immunsystems gegeben) und waren es vom Forschungsteam vergeben. Im kreisförmigen Layout sind die Elemente um die Peripherie der Abbildung herum angeordnet, wobei die Links die primäre zentrale Position haben; das Ausmaß der Verbindungen zwischen den Elementen visuell hervorheben.

Tabelle 2. Physiologische Systeme Schlüssel und Beispiele
Physiologisches SystemFarbeBeispieleAnzahl der Elemente
FortpflanzungsapparatLattéDysmenorrhoe, Endometriumhyperplasie, Libidoverlust105
Ernährung/NährstoffeLilaUnzureichender Gemüseverzehr, magnesiumarme Ernährung, Vitamin-D-Mangel94
ExternRotSozial isoliert, Abführmittelgebrauch, unzureichende Aktivität88
Magen-Darm-SystemHellblauReflux, Verstopfung, Appetitlosigkeit88
Nervöses SystemHellgrünSoziale Angst, Schlaflosigkeit, Kopfschmerzen75
ImmunsystemDunkelblauAllergien, Autoimmunprozesse, niedrige Anzahl weißer Blutkörperchen64
Integumentäres SystemRosaRosacea, Haarausfall, verschwitzte Handflächen47
Multisystemisch/systemischBlaugrünDarm-Hirn-Achse, Methylierungsproblem, geringe Vitalität44
EndokrineDunkelgrünNebennieren, Hypoglykämie, Insulinresistenz38
Hepatobiliäres SystemDunkelviolettHepatitis, Aktivität der Kupffer-Zellen, gestörter Gallenfluss30
Herz-Kreislauf-SystemMittelblauHerzklopfen, Hypotonie, Krampfadern29
BewegungsapparatMittelgrünGeringe Muskelmasse, Skoliose, Nackenschmerzenfünfzehn
AtmungssystemGelbAsthma, Sinusitis, obere Atemwege10
RenourinärOrangeNykturie, Nierensteine, Harndrang8
LymphsystemBraunLymphstauung, schlechte Lymphdrainage4

2.5.3 Modularitätslayout

Mithilfe eines Algorithmus innerhalb von Gephi wurde ein Modularitätslayout erstellt, das die Netzwerkzuordnung in Gemeinschaften (Cliquen) zerlegte, die durch Verknüpfungsmuster bestimmt wurden – die dichter verbundenen Elemente wurden in Gruppen geclustert. Diese Darstellung der Daten zeigt die zugrunde liegenden Strukturschichten innerhalb des Netzwerks. Im Modularity-Layout wurden die Elemente gemäß der Community, der sie angehörten, und nicht nach Attributen gefärbt.

2.6 Datenanalyse

2.6.1 Explorative Datenanalyse

Die explorative Datenanalyse (EDA) ist eine Methode zum Anzeigen visueller Darstellungen eines Datensatzes, um Erkenntnisse zu gewinnen. 42 Dabei kann ein Datensatz vorurteilsfrei exploriert werden, wodurch sich Erkenntnisse über die betrachteten Phänomene ergeben. 43 Tukey 42 (p1) erklärt EDA als „grafische Detektivarbeit“, und es ist ein Prozess, bei dem neue Informationen über einen Datensatz gesammelt werden können. In dieser Studie sollte diese Analyse eher explorativ als konfirmatorisch sein.

2.6.2 Netzwerkanalyse

Gephibietet verschiedene rechnerische und mathematische Algorithmen an, die zur Analyse der Netzwerkabbildungen verwendet wurden. Dazu gehörten Analysen auf Knotenebene (z. B. Grad, Entfernung und Betweenness Centrality) und Netzwerkebenenanalysen (z. B. Netzwerkdurchmesser, durchschnittlicher Grad, durchschnittliche Pfadlänge, durchschnittlicher Clustering-Koeffizient und Modularität). Die Analyse der Verbindungen innerhalb des Netzwerks liefert Informationen über den kürzesten Weg zwischen zwei beliebigen Elementen (Entfernung), die Häufigkeit, mit der ein Element auf dem kürzesten Weg zwischen einem beliebigen anderen Paar von Elementen auftritt, als Indikator für den Einfluss oder Eingriff eines Elements innerhalb des Netzwerks (Betweenness). Zentralität), der Grad der Vernetzung innerhalb des Netzwerks (durchschnittlicher Clustering-Koeffizient) und die Fähigkeit des Netzwerks, sich in Gemeinschaften zu zerlegen (Modularität). Der Durchmesser des Netzwerks ist der kürzeste Weg zwischen den beiden am weitesten entfernten Elementen. Die durchschnittliche Pfadlänge ist der durchschnittliche Mindestabstand zwischen zwei beliebigen Elementen, ein Maß für den durchschnittlichen Abstand zwischen allen Elementen. Der durchschnittliche Clustering-Koeffizient ist ein Maß für die Dichte des Netzwerks, mit einem möglichen Bereich von Null bis Eins. Die Eigenvektorzentralität ist ein Maß für die Bedeutung jedes Elements, das durch die Anzahl der Links bestimmt wird, die ein Element hat, und die Anzahl der Links, die seine Verbindungen im gesamten Netzwerk gemessen haben. Die wichtigsten für diese Studie relevanten Netzwerkbegriffe und -maßnahmen sind in der Tabelle definiert Der durchschnittliche Clustering-Koeffizient ist ein Maß für die Dichte des Netzwerks, mit einem möglichen Bereich von Null bis Eins. Die Eigenvektorzentralität ist ein Maß für die Bedeutung jedes Elements, das durch die Anzahl der Links bestimmt wird, die ein Element hat, und die Anzahl der Links, die seine Verbindungen im gesamten Netzwerk gemessen haben. Die wichtigsten für diese Studie relevanten Netzwerkbegriffe und -maßnahmen sind in der Tabelle definiert Der durchschnittliche Clustering-Koeffizient ist ein Maß für die Dichte des Netzwerks, mit einem möglichen Bereich von Null bis Eins. Die Eigenvektorzentralität ist ein Maß für die Bedeutung jedes Elements, das durch die Anzahl der Links bestimmt wird, die ein Element hat, und die Anzahl der Links, die seine Verbindungen im gesamten Netzwerk gemessen haben. Die wichtigsten für diese Studie relevanten Netzwerkbegriffe und -maßnahmen sind in der Tabelle definiert 3 . Ziel dieser Analysen war es, strukturelle und funktionale Informationen über die Netzwerkabbildungen zu liefern.

Tabelle 3. Wichtige Netzwerkbegriffe und Beispiele
Sie können die Tabelle nach rechts/links scrollen (PC) oder ziehen (Tablet & Smartphone)

Tabelle ansehen

BegriffDefinitionInformationen, die dies über den Knoten oder das Netzwerk bereitstelltBedeutung in diesem NetzwerkBeispiel(e) oder Wert in diesem Netzwerk
Grundlegend
KnotenEine Komponente oder ein Element eines Netzwerks.Identifiziert verschiedene Elemente innerhalb des SystemsDemonstriert einen relevanten Aspekt der Fallpräsentation, wie er von einem oder mehreren Teilnehmern identifiziert wurdeSelenmangel in der Nahrung, prämenstrueller Stress, schlechte Wundheilung, Verstopfung
VerknüpfungEine Verbindung in einer bestimmten Richtung zwischen einem beliebigen Paar von Elementen.Identifiziert verschiedene Einflussbeziehungen innerhalb des SystemsZeigt eine Beziehung zwischen zwei Elementen auf, die als relevant für die Fallpräsentation angesehen wird, wie von einem oder mehreren der Teilnehmer identifiziertEndometriumhyperplasie à geschädigtes Endometriumgewebe à rezidivierende Uteruspolypen
WegEine Folge von Verbindungen und Elementen, die ein Paar oder eine Gruppe von Elementen verbindet.Identifiziert eine Reihe von Einflussbeziehungen zwischen zwei oder mehr ElementenDemonstriert eine Reihe von Beziehungen zwischen zwei oder mehr Elementen, die von einem oder mehreren Teilnehmern identifiziert wurdenErhöhtes Cortisol à Aktivierung des sympathischen Nervensystems à soziale Angst à übermäßiges Schwitzen à soziale Angst
Cluster oder GemeinschaftEine Untergruppe oder Clique von Elementen, die im Vergleich zu Elementen außerhalb der Untergruppe enger miteinander verbunden sind.Identifies well connected communities within the network, and reveals underlying network structureDemonstrates the element groupings identified by the participantsRed cluster (e.g., nervous system, fatigue, low mood, sympathetic nervous system dominance, general anxiety, hypothalamic-pituitary-adrenal dysfunction)
Node level measures
DegreeThe number of connections (in or out) that an element has.Identifies elements deemed most in relationship with other elementsIdentifies the elements that practitioners deemed most interactive within the networkHigh degree: systemic inflammation Low degree: ovulation pain
Average degreeThe average number of connections across all elements.Provides the average number of connections that each element hasProvides a mid-point against which the number of connections each element has can be compared toAverage = 3.815 (with variation between one and 157)
DistanceThe number of connections on the shortest path between two elements.Detects the minimum number of steps influence needs to travel.Demonstrates the intermediate steps for influence to spread between two elements, as determined by the participantsExcess alcohol intake à liver à reduced fat metabolism à oxidative stress
Betweenness centralityHow often an element appears on the shortest path between other pairs of elements.Aggregates the number of paths that pass through a particular elementDemonstrates the value of each element in terms of its potential to interact with others as identified by the participantsDysbiosis is on the shortest path between: diet & bloating with cramping; gas production & gut fermentation; toxin recycling & halitsosis. Systemic inflammation = 110106.82, Stress = 77489.13, Gut dysbiosis = 49353.82, General anxiety = 37172.48
Clustering co-efficientThe number of connections an element has divided by the total number of possible connections. The highest possible value is 1 (where an element is connected to all other elements).Along with the mean shortest path, the clustering co-efficient can indicate a ‘small-world‘ effect, and signifies how embedded elements are within their neighbourhood.Denotes the extent to which elements are connected within the network.Average clustering co-efficient = 0.126 (therefore, on average each element is connected to 12.6% of the total of other elements)
Eigenvector centralityMeasures the value of each element, based on the number of connections it has, and the number of connections the elements it is linked to has, and so on across the network.Measures of the influence of an element within the networkDenotes the extent to which well-connected elements are linked to other well-connected elementsSystemic inflammation (1), fatigue (0.72), general anxiety (0.67), gut dysbiosis (0.56), poor immune function (0.47).
Network level measures
DiameterThe shortest pathway between the two most distant elements.Provides the parameters of the networkA measure of how tightly the elements in the network are connected, as identified by the participantsDiameter = 13
Average path lengthThe average of the shortest path between all pairs of elements.The average minimum number of connections between all pairs of elementsAngabe der Leichtigkeit, mit der sich Änderungen im System ausbreiten könnenDurchschnittliche Pfadlänge = 4,148
Durchschnittlicher Clustering-KoeffizientDer Durchschnitt des Clustering-Koeffizienten für alle Elemente.Über alle Elemente gemittelt, der Anteil der Elemente mit direkter Verbindung zu jedem Element dividiert durch die Gesamtzahl der im Netzwerk identifizierten Elemente.Ein Maß dafür, wie verbunden und gruppiert das Netzwerk istDurchschnittlicher Clustering-Koeffizient = 0,126
ModularitätEin Maß für das Ausmaß, in dem das Netzwerk in Gemeinschaften zerfällt.Zeigt die zugrunde liegenden Strukturschichten innerhalb des Netzwerks anInnerhalb von Gemeinschaften gibt es dichtere Interaktionsmöglichkeiten und zeigt potenzielle Unterstrukturen auf, die von den Teilnehmern identifiziert wurden11 Gemeinschaften mit jeweils zwischen neun und 112 Elementen entdeckt. Modularitätsbewertung = 0,425

3. ERGEBNISSE

An der Studie nahmen sieben australische Naturheilpraktiker teil (jeweils einer aus New South Wales und Westaustralien, zwei aus Queensland und drei aus Victoria; vier aus Hauptstädten und drei aus einer regionalen oder ländlichen Gegend). Sie berichteten über eine klinische Erfahrung zwischen zwei und elf Jahren (Mittelwert: 5,43 Jahre). Jeder Teilnehmer steuerte 10 Mindmaps bei (jedes Mapping von einem anderen Patienten), wodurch insgesamt 70 verschiedene Mindmaps bereitgestellt wurden, die eine Fallübersicht von 70 verschiedenen Patienten darstellten (beschreibende Daten jeder Mindmap sind in Tabelle  4 angegeben ).

Tabelle 4. Individuelle Mindmap-Beschreibungsdaten
Sie können die Tabelle nach rechts/links scrollen (PC) oder ziehen (Tablet & Smartphone)

Tabelle ansehen

Praktiker-Teilnehmer (verwendete Pseudonyme)FallnummerKundenpräsentationAlter des KundenGeschlechtsidentifikation des KundenAnzahl der ElementeAnzahl der LinksAnzahl der identifizierten physiologischen Systeme*Physiologische Systeme identifiziertErnährungs-/Nährstoffelemente identifiziertExterne Elemente identifiziert
Laney1Müdigkeit, zentrale Gewichtszunahme, Angst, Depression, wiederkehrende Polypen36Weiblich69787Multisystem, Nervensystem, Fortpflanzungssystem, Immunsystem, endokrines System, Magen-Darm-System, hepatobiliäres SystemYY
2Geringe Libido, starke Angstzustände, dysfunktionale Uterusblutungen26Weiblich79764Nervensystem, Multisystem, Fortpflanzungssystem, Magen-Darm-SystemYY
3Anhaltende Akne vulgaris, die vor der Menstruation zyklisch aufflammt24Weiblich46656Fortpflanzungssystem, Integumentäres System, Nervensystem, Endokrines System, Hepatobiliäres System, MultisystemYY
4Anhaltende chronische Akne, Langzeitanwendung von Doxycyclin, Verdauungsprobleme, prämenstruelles Syndrom, Angstzustände25Weiblich53526Endokrine, Magen-Darm-System, Fortpflanzungssystem, Nervensystem, Immunsystem, Integumentäres SystemYY
5Chronic acne, premenstrual syndrome24Female54516Integumentary system, reproductive system, hepatobiliary system, renourinary system, nervous system, endocrine systemYY
6Vulvodynia, severe premenstrual syndrome, irritable bowel syndrome, fatigue, anxiety, panic attacks37Female86967Immune system, reproductive system, multisystem, nervous system, gastrointestinal system, hepatobiliary system, endocrine systemYY
7Papulopustular rosacea, irritable bowel syndrome, chronic stress44Female821109Integumentary system, gastrointestinal system, nervous system, reproductive system, multisystem, immune system, lymphatic system, hepatobiliary system, respiratory systemYY
8Chronic acne, digestive issues, reactive skin22Female52647Integumentary system, gastrointestinal system, nervous system, renourinary system, hepatobiliary system, reproductive system, multisystemYy
9Chronic bacterial vaginosis, poor sleep quality, food intolerances, bloating, chronic diarrhoea32Female49636Reproductive system, multisystem, immune system, gastrointestinal system, nervous system, lymphatic systemYY
10Chronic eczema, allergic rhinitis, asthma26Male47516Integumentary system, immune system, nervous system, hepatobiliary system, respiratory system, multisystemYY
Shay1Fertility issues, irregular menstrual cycles, hypothyroidism37Female40517Integumentary system, immune system, hepatobiliary system, gastrointestinal system, reproductive system, endocrine system, multisystemYY
2Psoriasis, recurrent miscarriage22Female37434Integumentary system, reproductive system, nervous system, multisystemYY
3Poly cystic ovarian syndrome, chronic acne, irregular cycle, low mood26Female45576Reproductive system, integumentary system, nervous system, endocrine system, gastrointestinal system, hepatobiliary systemYY
4Hypertension, chronic stress51Female40525Cardiovascular system, nervous system, hepatobiliary system, gastrointestinal system, multisystemYY
5Poly cystic ovarian syndrome, irregular cycle, chronic acne29Female53657Reproductive system, endocrine system, integumentary system, nervous system, gastrointestinal system, hepatobiliary system, multisystemYY
6Depression, constipated16Female33484Gastrointestinal system, nervous system, reproductive system, multisystemYY
7Constipation, fatigue, anxiety21Female29445Gastrointestinal system, nervous system, reproductive system, hepatobiliary system, multisystemYY
8Anxiety, bloating27Female40543Nervous system, gastrointestinal system, multisystemYY
9Immune insufficiency, fatigue, stress28Female26435Immune system, nervous system, multisystem, endocrine system, lymphatic systemYY
10Fertility issues, chronic stress, poor sleep quality38Female29464Reproductive system, nervous system, multisystem, endocrine system, cardiovascular systemYY
Kerrie1Fatigue, low mood, dysbiosis, mood reactivity, allergic rhinitis, chronic stress41Female871107Multisystem, nervous system, gastrointestinal system, immune system, hepatobiliary system, endocrine system, respiratory systemYY
2Eczema, allergic rhinitis, asthma, dysbiosis40Female49608Integumentary system, immune system, gastrointestinal system, nervous system, reproductive system, endocrine system, hepatobiliary system, respiratory systemYY
3Cystic acne, irregular cycle30Female52637Integumentary system, reproductive system, nervous system, endocrine system, multisystem, gastrointestinal system, hepatobiliary systemYY
4Severe nausea, fatigue, chronic stress48Female741026Multisystem, gastrointestinal system, reproductive system, hepatobiliary system, endocrine system, renourinary systemYY
5Severe cystic acne, unwelcome weight gain27Female54987Integumentary system, multisystem, reproductive system, immune system, endocrine system, gastrointestinal system, hepatobiliary systemYY
6Severe eczema, poor diet, dysbiosis40Female41756Integumentary system, gastrointestinal system, immune system, hepatobiliary system, nervous system, respiratory systemYY
7Poor sleep quality, back injury, unwelcome weight gain43Female41525Reproductive system, multisystem, hepatobiliary system, musculoskeletal system, immune systemYY
8Anaemia, poor sleep quality, chronic acne, chronic stress39Female40475Multisystem, nervous system, integumentary system, reproductive system, hepatobiliary systemYY
9Fatigue, low mood, dysbiosis, mood reactivity, allergic rhinitis41Female50597Multisystem, nervous system, gastrointestinal system, immune system, reproductive system, hepatobiliary system, respiratory systemYY
10Depression, grief, alcohol use issues72Female28615Nervous system, cardiovascular system, hepatobiliary system, gastrointestinal system, multisystemYY
Maggie1Eczema, stress, food intolerances, goitre35Male31487Integumentary system, nervous system, endocrine system, immune system, multisystem, hepatobiliary system, gastrointestinal systemYY
2Severe chronic stress, brain fog, chronic back pain, irritable bladder53Male15257Nervous system, musculoskeletal system, renourinary system, gastrointestinal system, multisystem, immune system, endocrine systemNY
3Irritable bowel syndrome, insomnia, fatigue, poor diet34Female26454Gastrointestinal system, nervous system, multisystem, integumentary systemYY
4Reflux, bloating, low appetite, chronic headaches43Male31396Gastrointestinal system, nervous system, hepatobiliary system, nervous system, integumentary system, renourinary systemYY
5Full body rash, severe stress54Female15214Immune system, nervous system, multisystem, integumentary systemYY
6Chronic cystic acne, amenorrhoea, anxiety, irritable bowel syndrome24Female20385Integumentary system, reproductive system, gastrointestinal system, nervous system, multisystemYY
7Eczema, food allergies, food intolerances, autism, anxiety16Female14185Nervous system, integumentary system, immune system, gastrointestinal system, multisystemYY
8Cystic acne, poor wound healing, overweight, social anxiety15Male29388Integumentary system, multisystem, nervous system, gastrointestinal system, reproductive system, endocrine system, hepatobiliary system, lymphatic systemYN
9Anxiety, irregular cycle, dysbiosis28Female28307Nervous system, reproductive system, gastrointestinal system, respiratory system, multisystem, hepatobiliary system, immune systemYY
10Recurrent bronchitis, poor immune function, asthma, recurrent upper respiratory tract infections62Female14314Respiratory system, immune system, gastrointestinal systemYY
Charlie1Psoriasis, stress, anxiety, dysbiosis26Female41495Integumentary system, nervous system, gastrointestinal system, multisystem, immune systemYY
2Perimenopause, unwelcome weight gain, central adiposity, low mood50Female46574Reproductive system, multisystem, nervous system, endocrine systemYN
3Dysbiosis, food intolerances, chronic stress33Female41624Gastrointestinal system, nervous system, immune system, multisystemYY
4Acne, chronic stress, blood sugar irregularities23Female50666Nervous system, integumentary system, endocrine system, reproductive system, hepatobiliary system, multisystemYY
5Chronic atopic dermatitis, dysbiosis24Female34474Integumentary system, immune system, gastrointestinal system, hepatobiliary systemYY
6Insomnia, low immune function, chronic stress32Female33394Respiratory system, immune system, nervous system, multisystemYY
7Allergic rhinitis, poly cystic ovarian syndrome, unwelcome weight gain33Female50747Respiratory system, reproductive system, immune system, nervous system, gastrointestinal system, multisystem, endocrine systemYY
8Chronic back pain, low mood34Male38534Musculoskeletal system, nervous system, immune system, multisystemYN
9Fatigue, insomnia, constipation61Female62875Nervous system, gastrointestinal system, endocrine system, hepatobiliary system, reproductive system, multisystemYY
10Fatigue, depression, dysbiosis28Male43614Multisystem, nervous system, gastrointestinal system, immune systemYY
Gemma1Dysbiosis, poor immune function, stress9Female31315Gastrointestinal system, immune system, nervous system, reproductive system, multisystemYY
2Reflux, dysbiosis, food intolerances, anxiety19Female42545Gastrointestinal system, nervous system, immune system, hepatobiliary system, multisystemYY
3Acne, poor sleep quality23Female37425Integumentary system, nervous system, multisystem, reproductive system, immune systemYY
4Acne, viral rhinitis, poor immune function25Female20286Integumentary system, immune system, respiratory system, endocrine system, nervous system, lymphatic systemNY
5Depression, chronic headaches, unwelcome weight gain25Female32666Nervous system, multisystem, hepatobiliary system, gastrointestinal system, respiratory system, immune systemYY
6Raynaud’s syndrome, joint pain and stiffness26Male12165Multisystem, immune system, musculoskeletal system, cardiovascular system, nervous systemNY
7Insufficient lactation, anxiety, stress, fatigue29Female17204Multisystem, nervous system, reproductive system, cardiovascular systemYY
8Irregular cycle, menorrhagia, constipation, depression36Female45738Reproductive system, gastrointestinal system, nervous system, integumentary system, hepatobiliary system, multisystem, endocrine system, immune systemYY
9Perimenopause, fatigue, anxiety, panic attacks51Female22355Reproductive system, multisystem, nervous system, musculoskeletal system, cardiovascular systemYY
10Chronic stress, fatigue, poor memory54Female15266Nervous system, multisystem, cardiovascular system, musculoskeletal system, immune system, endocrine systemNY
Martine1Fatigue, poor sleep quality, stress, anhedonia44Male48638Multisystem, nervous system, reproductive system, lymphatic system, cardiovascular system, hepatobiliary system, immune system, endocrine systemYY
2Recurrent viral rhinitis, fatigue, poor immune function, poor diet, stress15Female21435Immune system, respiratory system, nervous system, musculoskeletal system, gastrointestinal systemYY
3Anxiety, mood swings, menopausal symptoms61Female20486Multisystem, nervous system, reproductive system, renourinary system, gastrointestinal system, integumentary systemNY
4Chronic psoriasis, perimenopausal, Gilberts syndrome53Female23396Integumentary system, reproductive system, multisystem, immune system, gastrointestinal system, hepatobiliary systemYY
5Menopausal symptoms, urinary urgency, urinary tract infections, low libido60Female37558Reproductive system, renourinary system, integumentary system, gastrointestinal system, nervous system, hepatobiliary system, immune system, endocrine systemYN
6Chronic sinusitis, gastroparesis, joint pain, osteoarthritis65Female31499Cardiovascular system, hepatobiliary system, reproductive system, musculoskeletal system, gastrointestinal system, respiratory system, immune system, nervous system, multisystemNY
7Perimenopausal, dysbiosis, mood swings51Female34558Reproductive system, gastrointestinal system, nervous system, cardiovascular system, multisystem, hepatobiliary system, integumentary system, endocrine systemYN
8Psoriatic arthritis, dysbiosis25Female32566Musculoskeletal system, integumentary system, hepatobiliary system, nervous system, immune system, gastrointestinal systemYY
9Chronische Kopfschmerzen, Menstruationsbeschwerden, Angstzustände, Depressionen, Müdigkeit29Weiblich34523Nervensystem, Fortpflanzungssystem, MultisystemYY
10Angst, Angst, schlechte Laune, Müdigkeit, Perimenopause48Weiblich31474Fortpflanzungssystem, Nervensystem, Immunsystem, MultisystemYY

3.1 Explorative Datenanalyse

3.1.1 Kraftbasiertes Attributmapping

Abbildung  1ist eine vollständige kombinierte Attributnetzwerkkartierung aller Elemente und Assoziationen, die von den Teilnehmern bei 70 verschiedenen Patienten mit unterschiedlichen Präsentationsproblemen identifiziert wurden. Das kombinierte Netzwerk-Mapping der 70 echten Patientendaten-Mindmaps enthält insgesamt 739 Elemente und 2724 Links. Der Grad (Anzahl eingehender oder ausgehender Verbindungen) reichte von eins für 112 Elemente bis 157 (systemische Entzündung). Der durchschnittliche Grad der Top 10 der am häufigsten verlinkten Elemente betrug 84, während der durchschnittliche Grad der Elemente mit 20 Grad oder weniger (insgesamt 651 Elemente) 4,85 betrug. Die von den Teilnehmern identifizierten Elemente, die am stärksten verbunden und daher integraler Bestandteil der 70 Fälle waren, wie nach Größe und zentraler Position identifiziert, waren: Stress, Müdigkeit, allgemeine Angst, systemische Entzündung, Darmdysbiose, Ernährung, beeinträchtigte Immunfunktion, Magen-Darm-Trakt, Nervensystem, intestinale Hyperpermeabilität, Verdauungsstörungen und Nährstoffmalabsorption sowie beeinträchtigter Status verschiedener Nährstoffe (einschließlich Eisen, Vitamin D, Zink, Vitamin B-Komplex). Diese wurden nach sechs verschiedenen Attributen gefärbt: (i)Zustand, Zeichen oder Symptom , (ii) hypothetisches Risiko , (iii) genetische, konstitutionelle oder familiäre Veranlagung , (iv) Organ oder Subsystem , (v) externer oder Umwelteinfluss , (vi) biomedizinische Diagnose oder pathologisches Ergebnis (Tabelle  1 ).

Details are in the caption following the image

Abbildung 1

Im Abbildungsbetrachter öffnenPower Point
Force-basiertes Attributnetzwerk-Mapping

3.1.2 Physiologische und externe Systemabbildungen (kraftbasiert und zirkulär)

Die Elemente wurden nach physiologischen und externen Systemen gruppiert und gefärbt, wobei eine kraftbasierte (Abbildung  2 ) und eine kreisförmige (Abbildung  3 ) Kartierung verwendet wurde. Es gab einen Mittelwert von 46,19 Elementen (min: 4, max: 105) für jedes physiologische und externe System (Tabelle  2 ). Zu den physiologischen Systemen mit der größten Anzahl an Elementen gehörten: das Fortpflanzungssystem ( n  = 105), das Magen-Darm-System ( n  = 88), das Nervensystem ( n  = 75) und das Immunsystem ( n  = 64). Äußere Faktoren ( n  = 88) und Ernährung und Nährstoffe ( n = 94) hatte ebenfalls eine beträchtliche Anzahl von Elementen, die 25 % aller identifizierten Elemente ausmachten. Abbildung  2 hebt die Systemgruppierungen hervor (  Farbschlüssel siehe Tabelle 2 ). Jedes physiologische System wies mehrere Beziehungen auf, die mit allen anderen physiologischen Systemen und den externen Elementen identifiziert wurden, wie durch die Verbindungsmuster zwischen Elementen belegt (hervorgehoben durch  3 ).

Details are in the caption following the image

Abbildung 2

Im Abbildungsbetrachter öffnenPower Point
Force-basiertes Systemnetzwerk-Mapping
Details are in the caption following the image

Abbildung 3

Im Abbildungsbetrachter öffnenPower Point
Zirkuläres Systemnetzwerk-Mapping

3.1.3 Abbildung der Modularität

In Fig  . 4 ist ein Modularitätslayout dargestellt, bei dem die Farben der Elemente eher Gemeinschaft als Attribut bedeuten. Insgesamt wurden 11 Gemeinschaften vom Gephi- Algorithmus erkannt, die die Gemeinschaften von Symptomen, Subsystemen, Organen, Symptomen und Umwelteinflüssen angeben, die von den Praktikern als am engsten miteinander verbunden angesehen werden. Unter Verwendung eines EDA-Prozesses umfassten die größten identifizierten Gemeinschaften: Nervensystem und Stimmung (rot), Magen-Darm-Trakt, Leber, Ernährung, Verdauungsenzyme (dunkelgrün), Immunfunktion und Immunsystem (orange), Ernährung und Nährstoffe (rosa), weibliches Fortpflanzungssystem und Hormone(Dunkelblau). Es wurde auch eine stärker verstreute Gemeinschaft identifiziert , die systemische Entzündungen, das Integumentarsystem, Gelenkprobleme, das Lymphsystem und körperliche Aktivität (hellgrün) umfasste.

Details are in the caption following the image

Abbildung 4

Im Abbildungsbetrachter öffnenPower Point
Modulares Netzwerk-Mapping

3.2 Netzwerkanalyse

3.2.1 Netzwerkanalyse: Maßnahmen auf Knotenebene

Innerhalb des Netzwerks war jedes Element mit durchschnittlich 3.815 anderen Elementen verbunden, mit einer Gradvariation zwischen 1 und 157 und einem linksschiefen Gradverteilungsmuster (Hintergrundinformationsdatei  S1 ). Die Elemente mit dem höchsten Grad (Tabelle  5 ) umfassten systemische Entzündung (Grad = 157), Stress (Grad = 140), Darmdysbiose (Grad = 96), Angst (Grad = 92), beeinträchtigte Immunfunktion (Grad = 79), Müdigkeit (Grad = 76), schlechte Schlafqualität (Grad = 58), Ernährung (Grad = 50). Elemente mit hohen Betweenness Centrality-Werten sind in Tabelle  5 aufgeführt. Insgesamt 238 Elemente hatten eine Betweenness-Zentralität von null, 190 Elemente hatten eine Betweenness-Zentralität zwischen 0,50 und 500 und 147 Elemente hatten eine Betweenness-Zentralität zwischen 501 und 1500. 139 Elemente hatten mehr als 1501 Betweenness Centrality. Siehe Hintergrundinformationsdatei  S2 für die Verteilung der Eigenvektorzentralität und Tabelle  5 für die Elemente mit hoher Eigenvektorzentralität. Die Elemente mit den höchsten Eigenvektorzentralitätswerten waren systemische Entzündung, Müdigkeit und allgemeine Angst.

Tabelle 5. Elemente mit den höchsten Gradwerten, Betweenness-Zentralität und Eigenvektor-Zentralität
ElementGradZwischenzentralitätEigenvektorzentralität
Systemische Entzündung157110.106,821
Betonen14077.489.130,47
Darmdysbiose9649.353,820,56
Angst9237.172,480,67
Beeinträchtigte Immunfunktion7935.476,280,47
Ermüdung7625.313.040,72
Schlechte Schlafqualität5817.865,430,46
Diät5019.338,360,03
Nahrungs-/Nährstoff-Maldigestion & Malabsorption4714.659,690,38
Nervöses System4512.812,730,26

3.2.2 Netzwerkanalyse: Maßnahmen auf Netzwerkebene

Die Netzwerkanalyse ergab, dass der Durchmesser des Netzwerks 13 und die durchschnittliche Pfadlänge 4,148 betrug. Der durchschnittliche Clustering-Koeffizient betrug 0,126, was darauf hinweist, dass jedes Element in diesem Netzwerk im Durchschnitt mit 12,6 % anderer Elemente verbunden ist. Bei der Anwendung des Gephi-Modularitätsalgorithmus wurden insgesamt 11 Gemeinschaften mit einer Größenverteilung jeder Gemeinschaft im Bereich von acht bis 115 Elementen erkannt. Der Modularitätswert des Netzwerks war mit 0,425 hoch, was auf eine gut vernetzte interne Struktur mit einer hohen Dichte interner Verbindungen innerhalb der identifizierten Gemeinschaften hinweist, gemessen an den Verbindungen zwischen Gemeinschaften.

4. DISKUSSION

In dieser Studie wurden Netzwerkkartierungen des naturheilkundlichen Clinical-Reasoning-Prozesses erstellt und analysiert, um die primäre Gesundheitsversorgung mit einer komplexitätswissenschaftlichen Linse zu untersuchen. Diese Forschung bietet einen vorläufigen Einblick in die Verwendung einer komplexitätswissenschaftlichen Perspektive, um die Manifestation der ganzheitlichen Philosophie zu erforschen, die von Naturheilpraktikern durch ihre Prozesse des klinischen Denkens zum Ausdruck gebracht wird.

Insgesamt wurden in den 70 klinischen Fällen, die in diese Studie eingeschlossen wurden, eine Vielzahl von Elementen und ihre vielfältigen Beziehungen berücksichtigt. Der hohe Modularitätswert dieses Datensatzes unterstreicht seine stark vernetzte Natur, wie sie von Naturheilpraktikern wahrgenommen wird; Physiologische Systeme und einzelne Organe wurden von den Praktikern nicht als eigenständige Einheiten betrachtet, sondern vielmehr in komplizierten und verstrickten Beziehungen. Der naturheilkundliche Prozess zur Diagnose und Behandlung von komplexen und chronischen Erkrankungen basiert auf einem integrativen physiologischen Ansatz 19 , einem Ansatz, der ein fester Bestandteil der naturheilkundlichen Ausbildung weltweit ist. 44 Stahl u. a. 19fanden heraus, dass Naturheilpraktiker unabhängig vom vorliegenden Problem mindestens zwei physiologische Patientensysteme in das Fallmanagement einbeziehen, und diese ganzheitliche Perspektive wird hier belegt. Dieser integrierte Ansatz zum Clinical Reasoning kann ein Ergebnis der komplexen Natur chronischer Erkrankungen sein, die 75 % der Gesamtfalllast von Naturheilpraktikern ausmachen. 45 Chronische Krankheiten neigen dazu, komplex und multifaktoriell zu sein, was komplexitätsbewusste Ansätze bevorzugt, anstatt solche, die einfache kausale Schlussfolgerungen und lineare Behandlungen umfassen. 46 – 48 Myers und Vigar 49fanden positive Beweise für eine naturheilkundliche Behandlung für eine Reihe komplexer und chronischer Erkrankungen, und es wurde festgestellt, dass eine chronische Krankheit signifikant mit Patienten in Verbindung gebracht wird, die naturheilkundliche klinische Dienste in Anspruch nehmen. 50Es ist nicht bekannt, inwieweit dieser integrierte und komplexitätsbewusste Ansatz von Naturheilpraktikern angewendet wird, wenn sie Patienten mit akuten Erkrankungen behandeln, und wie dieser ganzheitliche Ansatz im Vergleich zum Fallmanagement und den klinischen Argumentationsprozessen von Praktikern aus anderen Berufen aussehen könnte. Zukünftige Forschungen zu den Clinical-Reasoning-Prozessen von Praktikern aus verschiedenen Berufen bei der Verwaltung verschiedener Patientenvorstellungen können das Wissen über die Praktiken der primären Gesundheitsversorgung erweitern und gleichzeitig Verbesserungen in Effizienz, Wirksamkeit und Sicherheit ermöglichen.

In dieser Studie wurden mehrere Elemente als Schlüsselrollen im klinischen Prozess identifiziert, basierend darauf, wie viele Verbindungen sie zu anderen Elementen hatten, wie oft sie in vermittelnden Rollen zwischen anderen Elementen positioniert waren und wie häufig sie integrale Bestandteile struktureller Gemeinschaften waren. Zu diesen Schlüsselelementen gehörten systemische Entzündungen, Müdigkeit, Angst und Stress, Depressionen, Immunfunktion, Schlafqualität, Darmdysbiose und Darmfunktion sowie Ernährung. McIntyre et al., 50 fanden heraus, dass psychische Gesundheitsstörungen am häufigsten von denen berichtet wurden, die naturheilkundliche klinische Dienste in Anspruch nahmen, während Steel et al., 19festgestellt, dass endokrine und verdauungsfördernde Faktoren für das klinische Denken von Naturheilpraktikern entscheidend sind. Warum diese Aspekte der menschlichen Gesundheit in diesen naturheilkundlichen Fallbetrachtungen am stärksten vertreten sind, wird in dieser Studie nicht untersucht. Es ist möglich, dass dies wirklich lebenswichtige Aspekte der Gesundheit sind, die möglicherweise auf vorteilhafte Ansatzpunkte und Ziele für die Krankheitsprävention in einem salutogenetischen Behandlungsmodell hinweisen, oder es kann sein, dass diese Elemente eine gewisse Affinität zu naturheilkundlichen klinischen Argumenten haben und daher Priorität erhalten Fallmanagement in besonderen Situationen. Eine oder beide Möglichkeiten weisen auf mögliche wertvolle Bereiche zukünftiger Forschung hin.

Während die Verbindungen in den Kartierungen in dieser Studie innerhalb spezifischer physiologischer Systeme, externer Systeme und Gemeinschaftscliquen dichter sind, waren sie zwischen allen Subsystemen des menschlichen Organismus und mit dem externen Kontext reichlich vorhanden. Dieses Ergebnis legt nahe, dass Naturheilpraktiker nicht nur eine ganzheitliche Perspektive anwenden, indem sie jedes der Subsysteme und ihre Bestandteile innerhalb eines Netzwerks betrachten, sondern auch darüber nachdenken, wie Elemente in diesem ganzheitlichen Netzwerk miteinander in Beziehung stehen und interagieren. Es gibt eine wachsende Zahl von Forschungsarbeiten, die Verbindungen zwischen verschiedenen Organen und Systemen innerhalb des Körpers identifizieren. Beispielsweise wurde bei Patienten mit hepatischer Enzephalopathie (an sich eine Störung des Nervensystems, die durch eine schwere Leberfunktionsstörung verursacht wird) ein höheres Maß an kognitiver Beeinträchtigung, systemischer Entzündung,51 ; Es wurde festgestellt, dass Entzündungen, die häufig mit Darmdysbiose in Verbindung gebracht werden, eine Rolle bei der Ätiologie einer Reihe von psychiatrischen Erkrankungen spielen, insbesondere Depressionen 52 ; psychischer Stress ist mit kardiovaskulärer Morbidität verbunden, 53 – 55 und das Immunsystem und das Nervensystem sind über einen bidirektionalen Weg miteinander verbunden. 31 , 56 Forscher erkennen Elemente der komplexen Struktur des menschlichen Organismus durch die Entwicklung von Feldern wie der Psychoneuroimmunologie, 31 der Mikrobiota-Darm-Gehirn-Achse, 52 , 56 , 57 der Hypothalamus-Hypophysen-Nebennieren-Achse, 53Psychodermatologie 58 und das Stress-Reaktionssystem (das das endokrine, das Nerven- und das Immunsystem umfasst) 59 , was auf einen Trend weg von einer reduktionistischen Denkweise hin zu einer von Verbindung und Komplexität hindeutet. Weitere Forschungen aus der klinischen Praxis – sowohl in der Naturheilkunde als auch in anderen medizinischen Systemen – könnten dazu beitragen, weitere wichtige komplexe klinische Zusammenhänge zu identifizieren. Die Einbettung einer komplexitätswissenschaftlichen Perspektive in die klinische Praxis durch die Integration biologischer, biografischer und kontextueller Elemente 48 könnte die primäre Gesundheitsversorgung revolutionieren.

Innerhalb der Kartierungen in dieser Studie waren ein Viertel aller Elemente, die bei den 70 Patienten identifiziert wurden, äußerlich und umweltbedingt, wobei die restlichen 75 % innere Zustände, Organe, Symptome und physiologische Systeme umfassten. Als Teil ihres Case-Management-Prozesses berücksichtigen Naturheilpraktiker routinemäßig ein zusammenhängendes Netz aus internen physiologischen Systemen und externen Einflüssen – sowohl als Elemente als auch als eine Sammlung von Beziehungen. Die Behandlungsreaktion auf dieses Muster ist ein vollständiger und vollständiger Reaktionsplan, der so konzipiert ist, dass er dynamisch und vollständig funktioniert 25indem der Umweltkontext und die Störung des ganzen Menschen angesprochen werden. Die Naturheilkunde befasst sich sowohl mit dem einzigartigen äußeren Kontext des Individuums (z. B. Ernährung, Lebensstil, soziale Interaktionen, natürliche und gebaute Umgebung) als auch mit der Störung seiner gesamten Person, wie sie durch die vorliegenden Zeichen- und Symptommuster bestimmt wird. 25 Auch wenn die Besonderheiten eines solchen Ansatzes für die naturheilkundliche Medizin einzigartig sein mögen, gibt es einen evidenzbasierten Imperativ für die Berücksichtigung externer Faktoren in der primären Gesundheitsversorgung – zum Beispiel ist der Zusammenhang zwischen Ernährung, Lebensstil und Wohlbefinden seit langem anerkannt, 60 , 61 Placebo-Forschung hat einen Zusammenhang zwischen Erwartungen, Konditionierung, Kontext und Behandlungsergebnissen hergestellt, 62 – 64und ein Zusammenhang zwischen positiver sozialer Verbindung und Gesundheit und Langlebigkeit wurde nachgewiesen. 65 – 67 Die Bewältigung der Gesundheitsbedürfnisse eines Patienten ohne Berücksichtigung kontextbezogener Erwägungen birgt die Gefahr, auslösende und fortbestehende Elemente zu übersehen, von denen der Behandlungserfolg abhängt.

Diese Studie ist nicht ohne Einschränkungen. Die geringe Teilnehmerzahl (insgesamt sieben) erhöht das Risiko verzerrter Daten. Die kleine Stichprobe bedeutet auch, dass diese Studie nicht als Beispiel für die Verwendung eines komplexitätswissenschaftlichen Forschungsrahmens für den naturheilkundlichen Case-Management-Prozess angesehen werden kann, sondern eher eine vorläufige Untersuchung dieses Ansatzes in diesem Kontext darstellt. Außerdem hat das Forschungsteam die Elementattribute in der kraftbasierten Kartierung und die Zuordnung von Elementen zu Subsystemen in der Kartierung physiologischer und externer Systeme nach eigenem Ermessen zugewiesen. Dies ist nicht ideal, und in zukünftigen Studien dieser Art wäre es wünschenswert, einen Konsens über diese Zuordnungen innerhalb des untersuchten Berufs zu erzielen. Nichtsdestotrotz, Diese explorative Studie unterstreicht das Potenzial der Komplexitätswissenschaft bei der Analyse der klinischen Praxis und der klinischen Beziehungen sowie die Machbarkeit der Umsetzung eines solchen Ansatzes innerhalb eines Berufs. Größere, strengere Studien, die diese Methodik verwenden, könnten dazu beitragen, weitere Erkenntnisse zu gewinnen und die Einschränkungen dieser Studie zu überwinden.

5. SCHLUSSFOLGERUNG

Das naturheilkundliche klinische Management ist ganzheitlich in seinem Ansatz und basiert auf einer Multisystemsicht, die einen integrierten Umweltkontext und eine integrierte Physiologie umfasst. Während ein reduktionistisches und mechanistisches Paradigma die meisten aktuellen Gesundheitsforschungen beeinflusst, reicht es in seinem Umfang nicht aus, um die klinische Argumentation vollständig zu erforschen und zu bewerten, die nicht auf einer genau definierten Krankheitsklassifikation und einer entsprechenden linearen Behandlung beruht, sondern stattdessen aus einem breiten Behandlungsansatz für ein Ganzes besteht Bewertung des Organismus. Die Einbeziehung von komplexitätswissenschaftlichen Strategien und Werkzeugen, um eine komplexitätswissenschaftliche Perspektive in die klinische Forschung einzubringen, eröffnet unserem Verständnis des Prozesses der primären Gesundheitsversorgung die Möglichkeit, die Auseinandersetzung der Praktiker mit und das Verständnis des gesamten menschlichen Organismus im Kontext besser widerzuspiegeln. Die Naturheilkunde basiert auf Ganzheitlichkeit, was unsere Studie zeigt, steht im Einklang mit Systemdenken und einem Komplexitätsparadigma. Wie diese Studie zeigt, ermöglicht die Anwendung eines Komplexitätsforschungsrahmens eine kritische Untersuchung des Fallmanagements und des klinischen Denkens, das in traditionellen Gesamtsystemen der Medizin verwendet wird, und der philosophischen Grundlage, die diese untermauert. Während Holismus ein traditionelles Konzept im Gesundheitswesen ist, ermöglicht die Weiterentwicklung der Komplexitätswissenschaft und die Einbeziehung dieser Perspektive in die klinische Forschung die Entstehung eines zeitgenössischen ganzheitlichen Paradigmas, das den menschlichen Organismus als CAS anerkennt. Die Einbeziehung komplexitätswissenschaftlicher Perspektiven in die klinische Forschung kann ein Instrument sein, das dazu beitragen kann, die immer komplexer werdenden Probleme im Gesundheitswesen effektiver zu bewältigen.

AUTORENBEITRÄGE

Kim D. Graham : entwarf das Hauptmanuskript und bereitete die unterstützenden Dokumente vor. Amie Steel und Jon Wardle : Betreuung und Feedback während dieses Prozesses und aller produzierten Materialien. Alle Autoren haben das Manuskript geprüft und seine Einreichung genehmigt.

DANKSAGUNGEN

Das Endeavour College of Natural Medicine erhielt ein Stipendium, das den Teilnehmern eine nominelle Erstattung gewährte. Open-Access-Veröffentlichung, ermöglicht durch die University of Technology Sydney, als Teil der Wiley-University of Technology Sydney-Vereinbarung über den Council of Australian University Librarians.

Datenverfügbarkeitserklärung: Die Daten, die die Ergebnisse dieser Studie stützen, sind auf angemessene Anfrage beim entsprechenden Autor erhältlich. Die Daten sind aus Datenschutz- oder ethischen Gründen nicht öffentlich zugänglich.

Quellen

  1. Mazzocchi FComplexity and the reductionism-holism debate in systems biology: complexity and the reductionism-holism debateWiley Interdiscip Rev: Syst Biol Med20124(5): 413– 427doi:10.1002/wsbm.1181
  2. 2Pool RGeissler WMedical Anthropology. Open University Press; 2005.
  3. 3Pinsky MRComplexity modeling: identify instability earlyCrit Care Med201038S649– S655doi:10.1097/CCM.0b013e3181f24484
  4. 4Power JReductionism and nursing clinical realityBiomed J Sci Tech Res20171(3). doi:10.26717/BJSTR.2017.01.000285
  5. 5Andrews GJEvans JMcAlister S‘Creating the right therapy vibe‘: relational performances in holistic MedicineSoc Sci Med20138399– 109doi:10.1016/j.socscimed.2013.01.008
  6. 6Bell IKoithan MModels for the study of whole systemsIntegr Cancer Ther20065(4): 293– 307.
  7. 7Coulter IIntegration and paradigm clash: the practical difficulties of integrative medicine. In: P ToveyJ AdamsG Easthope, eds., The Mainstreaming of Complementary and Alternative Medicine. Routledge; 2004103– 122.
  8. 8Graham KDSteel AWardle JThe intersection between models of health and how healing transpires: a metaethnographic synthesis of complementary Medicine practitioners‘ perceptionsJ Altern Complement Med202127538– 549doi:10.1089/acm.2020.0521
  9. 9Ooi SLRae JPak SCImplementation of evidence-based practice: a naturopath perspectiveComplement Ther Clin Pract20162224– 28doi:10.1016/j.ctcp.2015.11.004
  10. 10 Oxford Dictionary2019. Accessed January 25. https://en.oxforddictionaries.com/definition/holism
  11. 11Bleakley ARe-visioning clinical reasoning, or stepping out from the skullMed Teach202143(4): 456– 462doi:10.1080/0142159X.2020.1859098
  12. 12Shin HSReasoning processes in clinical reasoning: from the perspective of cognitive psychologyKorean J Med Educ201931(4): 299– 308doi:10.3946/kjme.2019.140
  13. 13Victor-Chmil JCritical thinking versus clinical reasoning versus clinical judgment: differential diagnosisNurse Educ201338(1): 34– 36doi:10.1097/NNE.0b013e318276dfbe
  14. 14Simmons BClinical reasoning: concept analysisJ Adv Nurs201066(5): 1151– 1158doi:10.1111/j.1365-2648.2010.05262.x
  15. 15 World Health OrganizationBenchmarks for Training in Traditional Nat, Nat. World Health Organization; 2010.
  16. 16 World Naturopathic Federation. Global-Naturopathic-Regulation_Nov-2019.pdf. Published 2019. Accessed October 5, 2020. http://worldnaturopathicfederation.org/wp-content/uploads/2019/11/Global-Naturopathic-Regulation_Nov-2019.pdf
  17. 17 World Naturopathic Federation. WNF_Terminology_Document_final-Aug-2019.pdf. Published 2019. Accessed October 5, 2020. http://worldnaturopathicfederation.org/wp-content/uploads/2019/08/WNF_Terminology_Document_final-Aug-2019.pdf
  18. 18Hechtman LClinical Naturopathic Medicine2nd ed. Elsevier; 2019.
  19. 19Steel AGoldenberg JZHawrelak JA, et al. Integrative physiology and traditional naturopathic practice: results of an international observational studyIntegr Med Res20209(4):100424. doi:10.1016/j.imr.2020.100424
  20. 20Walach HJonas WBLewith GThe role of outcomes research in evaluating complementary and alternative MedicineAltern Ther20028(3): 88– 95doi:10.1016/B978-0-443-06367-1.50006-5
  21. 21Bell IRCaspi OSchwartz GE, et al. Integrative medicine and systemic outcomes research: issues in the emergence of a new model for primary health careArch Intern Med2002162(2): 133– 140doi:10.1001/archinte.162.2.133
  22. 22Schloss JMcIntyre ESteel A, et al. Lessons from outside and within: exploring advancements in methodology for naturopathic medicine clinical researchJ Altern Complement Med201925(2): 135– 140doi:10.1089/acm.2018.0403
  23. 23Innes ADCampion PDGriffiths FEComplex consultations and the ‘edge of chaosBr J Gen Pract200555(510): 47– 52.
  24. 24Mitchell MComplexity; a Guided Tour. Oxford University Press; 2009.
  25. 25Koithan MBell IRNiemeyer KPincus DA complex systems science perspective for whole systems of complementary and alternative Medicine researchForsch Komplementärmedizin Res Complement Med201219(s1): 7– 14doi:10.1159/000335181
  26. 26Holm SDoes chaos theory have major implications for philosophy of Medicine? Med Humanit200228(2): 78– 81doi:10.1136/mh.28.2.78
  27. 27Sweeney KKernick DClinical evaluation: constructing a new model for post-normal MedicineJ Eval Clin Pract20028(2): 131– 138doi:10.1046/j.1365-2753.2002.00312.x
  28. 28Greenhalgh TPapoutsi CStudying complexity in health services research: desperately seeking an overdue paradigm shiftBMC Med201816(1): 95doi:10.1186/s12916-018-1089-4%3Cs12916-018-1089-4
  29. 29Launer JComplexity made simplePostgrad Med J201894(1116): 611– 612doi:10.1136/postgradmedj-2018-136096
  30. 30Ahn ACTewari MPoon CSPhillips RSThe limits of reductionism in Medicine: could systems biology offer an alternative? PLoS Med20063(6):e208. doi:10.1371/journal.pmed.0030208
  31. 31Blalock JESmith EMConceptual development of the immune system as a sixth senseBrain Behav Immun200721(1): 23– 33doi:10.1016/j.bbi.2006.09.004
  32. 32Foss LPutting the mind back into the body a successor scientific medical modelTheor Med199415(3): 291– 313doi:10.1007/BF01313344
  33. 33Kaplin ABartner SReciprocal communication between the nervous and immune systems: crosstalk, back-talk and motivational speechesInt Rev Psychiatry200517(6): 439– 441doi:10.1080/02646830500381419
  34. 34Peters DHThe application of systems thinking in health: why use systems thinking? Health Res Policy Syst201412(1):51. doi:10.1186/1478-4505-12-51
  35. 35Sturmberg, Martin CMKaterndahl DASystems and complexity thinking in the general practice literature: an integrative, historical narrative reviewAnn Fam Med201412(1): 66– 74doi:10.1370/afm.1593
  36. 36Lansing JSComplex adaptive systemsAnnu Rev Anthropol200332(1): 183– 204doi:10.1146/annurev.anthro.32.061002.093440
  37. 37Gustafsson MNestor CEZhang H, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosisGenome Med20146(10): 82doi:10.1186/s13073-014-0082-6
  38. 38Tuffin RImplications of complexity theory for clinical practice and healthcare organizationBJA Educ201616(10): 349– 352doi:10.1093/bjaed/mkw013
  39. 39Fønnebø VGrimsgaard SWalach H, et al. Researching complementary and alternative treatments—the gatekeepers are not at homeBMC Med Res Methodol20077(1):7. doi:10.1186/1471-2288-7-7
  40. 40Bastian MHeymann SJacomy M Gephi: An Open Source Software for Exploring and Manipulating NetworksProc Third Int ICWSM Conf. Published online 20092.
  41. 41Graham KDSteel AWardle JEmbracing the complexity of primary health care: system-based tools and strategies for researching the case management processJ Multidiscip Healthc2021142817– 2826doi:10.2147/JMDH.S327260<Volume.
  42. 42Tukey JWExploratory Data Analysis. Addison-Wesley; 1977.
  43. 43Martinez WLMartinez ARSolka J Exploratory Data Analysis with MATLAB. CRC Press LLC; 2017. Accessed March 4, 2021. <http://ebookcentral.proquest.com/lib/uts/detail.action?docID=5475665
  44. 44 World Naturopathic Federation. WNF White Paper: Naturopathic Philosophies, Principles and Theories. Published online 2017.
  45. 45Steel AFoley HBradley R, et al. Overview of international naturopathic practice and patient characteristics: results from a cross-sectional study in 14 countriesBMC Complement Med Ther202020(1): 59doi:10.1186/s12906-020-2851-7
  46. 46Brown CAThe role of paradoxical beliefs in chronic pain: a complex adaptive systems perspectiveScand J Caring Sci200721(2): 207– 213doi:10.1111/j.1471-6712.2007.00457.x
  47. 47Jonas WBBeckner WCoulter IProposal for an integrated evaluation model for the study of whole systems health care in cancerIntegr Cancer Ther20065(4): 315– 319.
  48. 48Sturmberg JPGetz LOStange KCUpshur REGMercer SWBeyond multimorbidity: what can we learn from complexity science? J Eval Clin Pract202127(5): 1187– 1193doi:10.1111/jep.13521
  49. 49Myers SPVigar VThe state of the evidence for whole-system, multi-modality naturopathic medicine: a systematic scoping reviewJ Altern Complement Med201925(2): 141– 168doi:10.1089/acm.2018.0340
  50. 50McIntyre EAdams JFoley H, et al. Consultations with naturopaths and Western herbalists: prevalence of use and characteristics of users in AustraliaJ Altern Complement Med201925(2): 181– 188.
  51. 51Ahluwalia VBetrapally NSHylemon PB, et al. Impaired gut-liver-brain axis in patients with cirrhosisSci Rep20166(1):26800. doi:10.1038/srep26800
  52. 52Anderson GMaes MThe gut–brain axis: the role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditionsAdv Integr Med20152(1): 31– 37doi:10.1016/j.aimed.2014.12.007
  53. 53Brotman DJGolden SHWittstein ISThe cardiovascular toll of stressThe Lancet2007370(9592): 1089– 1100doi:10.1016/S0140-6736(07)61305-1
  54. 54Chida YHamer MChronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: a quantitative review of 30 years of investigationsPsychol Bull2008134(6): 829– 885doi:10.1037/a0013342
  55. 55Dimsdale JEPsychological stress and cardiovascular diseaseJ Am Coll Cardiol200851(13): 1237– 1246doi:10.1016/j.jacc.2007.12.024
  56. 56Powell NWalker MMTalley NJThe mucosal immune system: master regulator of bidirectional gut–brain communicationsNat Rev Gastroenterol Hepatol201714(3): 143– 159doi:10.1038/nrgastro.2016.191
  57. 57Foster JARinaman LCryan JFStress & the gut-brain axis: regulation by the microbiomeNeurobiol Stress20177124– 136doi:10.1016/j.ynstr.2017.03.001
  58. 58Greydanus DETareen RSMerrick JThe mind, body and spirit in psychodermatology: the legacy of george L engel, MDInt J Child Health Hum Dev20158(1): 3– 10.
  59. 59Selhub EMind–body medicine for treating depression: using the mind to alter the body’s response to stressAltern Complement Ther200713(1): 4– 9doi:10.1089/act.2007.13107
  60. 60Chang-Claude JHermann SEilber USteindorf KLifestyle determinants and mortality in German vegetarians and Health-Conscious persons: results of a 21-Year follow-upCancer Epidemiol Prev Biomark200514(4): 963– 968doi:10.1158/1055-9965.EPI-04-0696
  61. 61Willett WCKoplan JPNugent R, et al. Prevention of Chronic Disease by Means of Diet and Lifestyle Changes. In: DT JamisonJG BremanAR Measham, et al, eds. Disease Control Priorities in Developing Countries2nd ed. World Bank; 2006. Accessed October 30, 2020. http://www.ncbi.nlm.nih.gov/books/NBK11795/
  62. 62Colloca LMiller FGHarnessing the placebo effect: the need for translational researchPhilos Trans R Soc B Biol Sci2011366(1572): 1922– 1930doi:10.1098/rstb.2010.0399
  63. 63Dodd SDean OMVian JBerk MA review of the theoretical and biological understanding of the nocebo and placebo phenomenaClin Ther201739(3): 469– 476doi:10.1016/j.clinthera.2017.01.010
  64. 64Thompson JJRitenbaugh CNichter MReconsidering the placebo response from a broad anthropological perspectiveCult Med Psychiatry200933(1): 112– 152doi:10.1007/s11013-008-9122-2
  65. 65Eisenberger NICole SWSocial neuroscience and health: neurophysiological mechanisms linking social ties with physical healthNat Neurosci201215(5): 669– 674doi:10.1038/nn.3086
  66. 66Holt-Lunstad JWhy social relationships are important for physical health: a systems approach to understanding and modifying risk and protectionAnnu Rev Psychol201869437– 458.
  67. 67Holt-Lunstad JBirmingham WCLight KCRelationship quality and oxytocin: influence of stable and modifiable aspects of relationshipsJ Soc Pers Relatsh201532(4): 472– 490doi:10.1177/0265407514536294

Wir sind eine zertifizierte Google News Quelle. Besuche uns bei Google News.

Ein guter Tipp ist auch regelmäßig in der Facebook-Gruppe Wissenswert – Naturheilkunde, alternative Medizin, Heilpflanzen, Gesundheit vorbeizuschauen. Dort erhalten Sie zahlreiche geprüfte und nützliche News, Neuigkeiten und Tipps zu alternativer Medizin, Naturheilkunde und Gesundheit.

Zur Facebook-Gruppe

Unsere Artikel kommen von Autoren, Medizinern und Universitäten aus der ganzen Welt und werden teilweise automatisch übersetzt. Wir bitten daher etwaige Formulierungsfehler zu entschuldigen.



Ähnliche Artikel

Schaltfläche "Zurück zum Anfang"